Efficient Multi-objective Reinforcement Learning via Multiple-gradient Descent with Iteratively Discovered Weight-Vector Sets

Author:

Cao Yongcan,Zhan Huixin

Abstract

Solving multi-objective optimization problems is important in various applications where users are interested in obtaining optimal policies subject to multiple (yet often conflicting) objectives. A typical approach to obtain the optimal policies is to first construct a loss function based on the scalarization of individual objectives and then derive optimal policies that minimize the scalarized loss function. Albeit simple and efficient, the typical approach provides no insights/mechanisms on the optimization of multiple objectives due to the lack of ability to quantify the inter-objective relationship. To address the issue, we propose to develop a new efficient gradient-based multi-objective reinforcement learning approach that seeks to iteratively uncover the quantitative inter-objective relationship via finding a minimum-norm point in the convex hull of the set of multiple policy gradients when the impact of one objective on others is unknown a priori. In particular, we first propose a new PAOLS algorithm that integrates pruning and approximate optimistic linear support algorithm to efficiently discover the weight-vector sets of multiple gradients that quantify the inter-objective relationship. Then we construct an actor and a multi-objective critic that can co-learn the policy and the multi-objective vector value function. Finally, the weight discovery process and the policy and vector value function learning process can be iteratively executed to yield stable weight-vector sets and policies. To validate the effectiveness of the proposed approach, we present a quantitative evaluation of the approach based on three case studies.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-objective reinforcement learning based on nonlinear scalarization and long-short-term optimization;Robotic Intelligence and Automation;2024-05-08

2. Multi-objective Privacy-preserving Text Representation Learning;Proceedings of the 30th ACM International Conference on Information & Knowledge Management;2021-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3