Avoiding Negative Side Effects of Autonomous Systems in the Open World

Author:

Saisubramanian Sandhya,Kamar Ece,Zilberstein Shlomo

Abstract

Autonomous systems that operate in the open world often use incomplete models of their environment. Model incompleteness is inevitable due to the practical limitations in precise model specification and data collection about open-world environments. Due to the limited fidelity of the model, agent actions may produce negative side effects (NSEs) when deployed. Negative side effects are undesirable, unmodeled effects of agent actions on the environment. NSEs are inherently challenging to identify at design time and may affect the reliability, usability and safety of the system. We present two complementary approaches to mitigate the NSE via: (1) learning from feedback, and (2) environment shaping. The solution approaches target settings with different assumptions and agent responsibilities. In learning from feedback, the agent learns a penalty function associated with a NSE. We investigate the efficiency of different feedback mechanisms, including human feedback and autonomous exploration. The problem is formulated as a multi-objective Markov decision process such that optimizing the agent’s assigned task is prioritized over mitigating NSE. A slack parameter denotes the maximum allowed deviation from the optimal expected reward for the agent’s task in order to mitigate NSE. In environment shaping, we examine how a human can assist an agent, beyond providing feedback, and utilize their broader scope of knowledge to mitigate the impacts of NSE. We formulate the problem as a human-agent collaboration with decoupled objectives. The agent optimizes its assigned task and may produce NSE during its operation. The human assists the agent by performing modest reconfigurations of the environment so as to mitigate the impacts of NSE, without affecting the agent’s ability to complete its assigned task. We present an algorithm for shaping and analyze its properties. Empirical evaluations demonstrate the trade-offs in the performance of different approaches in mitigating NSE in different settings.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning Constraints on Autonomous Behavior from Proactive Feedback;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3