MCTS-Minimax Hybrids with State Evaluations

Author:

Baier Hendrik,Winands Mark H. M.

Abstract

Monte-Carlo Tree Search (MCTS) has been found to show weaker play than minimax-based search in some tactical game domains. This is partly due to its highly selective search and averaging value backups, which make it susceptible to traps. In order to combine the strategic strength of MCTS and the tactical strength of minimax, MCTS-minimax hybrids have been introduced, embedding shallow minimax searches into the MCTS framework. Their results have been promising even without making use of domain knowledge such as heuristic evaluation functions. This article continues this line of research for the case where evaluation functions are available. Three different approaches are considered, employing minimax with an evaluation function in the rollout phase of MCTS, as a replacement for the rollout phase, and as a node prior to bias move selection. The latter two approaches are newly proposed. Furthermore, all three hybrids are enhanced with the help of move ordering and k-best pruning for minimax. Results show that the use of enhanced minimax for computing node priors results in the strongest MCTS-minimax hybrid investigated in the three test domains of Othello, Breakthrough, and Catch the Lion. This hybrid, called MCTS-IP-M-k, also outperforms enhanced minimax as a standalone player in Breakthrough, demonstrating that at least in this domain, MCTS and minimax can be combined to an algorithm stronger than its parts. Using enhanced minimax for computing node priors is therefore a promising new technique for integrating domain knowledge into an MCTS framework.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The phenomenon of decision oscillation: A new consequence of pathology in game trees;Computational Intelligence;2023-03-03

2. An analysis of Single-Player Monte Carlo Tree Search performance in Sokoban;Expert Systems with Applications;2022-04

3. Mimicking the Human Approach in the Game of Hive;2021 IEEE Symposium Series on Computational Intelligence (SSCI);2021-12-05

4. Bayesian Optimization for Backpropagation in Monte-Carlo Tree Search;Lecture Notes in Computer Science;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3