Cooperative, Dynamics-based, and Abstraction-Guided Multi-robot Motion Planning

Author:

Le Duong,Plaku Erion

Abstract

This paper presents an effective, cooperative, and probabilistically-complete multi-robot motion planner that enables each robot to move to a desired location while avoiding collisions with obstacles and other robots. The approach takes into account not only the geometric constraints arising from collision avoidance, but also the differential constraints imposed by the motion dynamics of each robot. This makes it possible to generate collision-free and dynamically-feasible trajectories that can be executed in the physical world.The salient aspect of the approach is the coupling of sampling-based motion planning to handle the complexity arising from the obstacles and robot dynamics with multi-agent search to find solutions over a suitable discrete abstraction. The discrete abstraction is obtained by constructing roadmaps to solve a relaxed problem that accounts for the obstacles but not the dynamics. Sampling-based motion planning expands a motion tree in the composite state space of all the robots by adding collision-free and dynamically-feasible trajectories as branches. Efficiency is obtained by using multi-agent search to find non-conflicting routes over the discrete abstraction which serve as heuristics to guide the motion-tree expansion. When little or no progress is made, the routes are penalized and the multi-agent search is invoked again to find alternative routes. This synergistic coupling makes it possible to effectively plan collision-free and dynamically-feasible motions that enable each robot to reach its goal. Experiments using vehicle models with nonlinear dynamics operating in complex environments, where cooperation among robots is required, show significant speedups over related work.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3