Optimal Torpedo Scheduling

Author:

Goldwaser Adrian,Schutt Andreas

Abstract

We consider the torpedo scheduling problem in steel production, which is concerned with the transport of hot metal from a blast furnace to an oxygen converter. A schedule must satisfy, amongst other considerations, resource capacity constraints along the path and the locations traversed as well as the sulfur level of the hot metal. The goal is first to minimize the number of torpedo cars used during the planning horizon and second to minimize the time spent desulfurizing the hot metal. We propose an exact solution method based on Logic based Benders Decomposition using Mixed-Integer and Constraint Programming, which optimally solves and proves, for the first time, the optimality of all instances from the ACP Challenge 2016 within 10 minutes. In addition, we adapted our method to handle large-scale instances and instances with a more general rail network. This adaptation optimally solved all challenge instances within one minute and was able to solve instances of up to 100,000 hot metal pickups.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3