Decentralized Gradient-Quantization Based Matrix Factorization for Fast Privacy-Preserving Point-of-Interest Recommendation

Author:

Zhou Xuebin,Hu Zhibin,Huang Jin,Chen Jian

Abstract

With the rapidly growing of location-based social networks, point-of-interest (POI) recommendation has been attracting tremendous attentions. Previous works for POI recommendation usually use matrix factorization (MF)-based methods, which achieve promising performance. However, existing MF-based methods suffer from two critical limitations: (1) Privacy issues: all users’ sensitive data are collected to the centralized server which may leak on either the server side or during transmission. (2) Poor resource utilization and training efficiency: training on centralized server with potentially huge low-rank matrices is computational inefficient. In this paper, we propose a novel decentralized gradient-quantization based matrix factorization (DGMF) framework to address the above limitations in POI recommendation. Compared with the centralized MF methods which store all sensitive data and low-rank matrices during model training, DGMF treats each user’s device (e.g., phone) as an independent learner and keeps the sensitive data on each user’s end. Furthermore, a privacy-preserving and communication-efficient mechanism with gradient-quantization technique is presented to train the proposed model, which aims to handle the privacy problem and reduces the communication cost in the decentralized setting. Theoretical guarantees of the proposed algorithm and experimental studies on real-world datasets demonstrate the effectiveness of the proposed algorithm.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards privacy-preserving category-aware POI recommendation over encrypted LBSN data;Information Sciences;2024-03

2. Towards Detection-Recovery Strategy for Robust Decentralized Matrix Factorization;Lecture Notes in Computer Science;2024

3. Advanced Privacy-Preserving Federated Relationship Recommendation;2023 5th International Conference on Artificial Intelligence and Computer Applications (ICAICA);2023-11-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3