Author:
Balliu Alkida,Flammini Michele,Melideo Giovanna,Olivetti Dennis
Abstract
We consider Social Distance Games (SDGs), that is cluster formation games in which the utility of each agent only depends on the composition of the cluster she belongs to, proportionally to her harmonic centrality, i.e., to the average inverse distance from the other agents in the cluster. Under a non-cooperative perspective, we adopt Nash stable outcomes, in which no agent can improve her utility by unilaterally changing her coalition, as the target solution concept. Although a Nash equilibrium for a SDG can always be computed in polynomial time, we obtain a negative result concerning the game convergence and we prove that computing a Nash equilibrium that maximizes the social welfare is NP-hard by a polynomial time reduction from the NP-complete Restricted Exact Cover by 3-Sets problem. We then focus on the performance of Nash equilibria and provide matching upper bound and lower bounds on the price of anarchy of Θ(n), where n is the number of nodes of the underlying graph. Moreover, we show that there exists a class of SDGs having a lower bound on the price of stability of 6/5 − ε, for any ε > 0. Finally, we characterize the price of stability 5 of SDGs for graphs with girth 4 and girth at least 5, the girth being the length of the shortest cycle in the graph.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Maximizing Social Welfare in Score-Based Social Distance Games;Electronic Proceedings in Theoretical Computer Science;2023-07-11
2. On Pareto optimality in social distance games;Artificial Intelligence;2022-11
3. Distance Hedonic Games;SOFSEM 2021: Theory and Practice of Computer Science;2021