Can We Automate Scientific Reviewing?

Author:

Yuan Weizhe,Liu Pengfei,Neubig Graham

Abstract

The rapid development of science and technology has been accompanied by an exponential growth in peer-reviewed scientific publications. At the same time, the review of each paper is a laborious process that must be carried out by subject matter experts. Thus, providing high-quality reviews of this growing number of papers is a significant challenge. In this work, we ask the question “can we automate scientific reviewing? ”, discussing the possibility of using natural language processing (NLP) models to generate peer reviews for scientific papers. Because it is non-trivial to define what a “good” review is in the first place, we first discuss possible evaluation metrics that could be used to judge success in this task. We then focus on the machine learning domain and collect a dataset of papers in the domain, annotate them with different aspects of content covered in each review, and train targeted summarization models that take in papers as input and generate reviews as output. Comprehensive experimental results on the test set show that while system-generated reviews are comprehensive, touching upon more aspects of the paper than human-written reviews, the generated texts are less constructive and less factual than human-written reviews for all aspects except the explanation of the core ideas of the papers, which are largely factually correct. Given these results, we pose eight challenges in the pursuit of a good review generation system together with potential solutions, which, hopefully, will inspire more future research in this direction. We make relevant resource publicly available for use by future research: https://github. com/neulab/ReviewAdvisor. In addition, while our conclusion is that the technology is not yet ready for use in high-stakes review settings we provide a system demo, ReviewAdvisor (http://review.nlpedia.ai/), showing the current capabilities and failings of state-of-the-art NLP models at this task (see demo screenshot in A.2). A review of this paper written by the system proposed in this paper can be found in A.1.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3