Pattern-Based Approach to the Workflow Satisfiability Problem with User-Independent Constraints

Author:

Karapetyan Daniel,Parkes Andrew J.,Gutin Gregory,Gagarin Andrei

Abstract

The fixed parameter tractable (FPT) approach is a powerful tool in tackling computationally hard problems.  In this paper, we link FPT results to classic artificial intelligence (AI) techniques to show how they complement each other.  Specifically, we consider the workflow satisfiability problem (WSP) which asks whether there exists an assignment of authorised users to the steps in a workflow specification, subject to certain constraints on the assignment.  It was shown by Cohen et al. (JAIR 2014) that WSP restricted to the class of user-independent constraints (UI), covering many practical cases, admits FPT algorithms, i.e. can be solved in time exponential only in the number of steps k and polynomial in the number of users n.  Since usually k << n in WSP, such FPT algorithms are of great practical interest. We present a new interpretation of the FPT nature of the WSP with UI constraints giving a decomposition of the problem into two levels.  Exploiting this two-level split, we develop a new FPT algorithm that is by many orders of magnitude faster than the previous state-of-the-art WSP algorithm and also has only polynomial-space complexity.  We also introduce new pseudo-Boolean (PB) and Constraint Satisfaction (CSP) formulations of the WSP with UI constraints which efficiently exploit this new decomposition of the problem and raise the novel issue of how to use general-purpose solvers to tackle FPT problems in a fashion that meets FPT efficiency expectations.  In our computational study, we investigate, for the first time, the phase transition (PT) properties of the WSP, under a model for generation of random instances.  We show how PT studies can be extended, in a novel fashion, to support empirical evaluation of scaling of FPT algorithms.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A resilient inter-organizational workflow assignment plan selection approach: Application to a digital health use case;International Journal of Engineering Business Management;2024-01-04

2. SATQUBOLIB: A Python Framework for Creating and Benchmarking (Max-)3SAT QUBOs;Communications in Computer and Information Science;2024

3. Beacon-Based Firing Control for Authorization Security in Workflows;IEEE Transactions on Reliability;2023-12

4. Valued Authorization Policy Existence Problem: Theory and Experiments;ACM Transactions on Privacy and Security;2022-07-09

5. Generalized Noise Role Mining;Proceedings of the 27th ACM on Symposium on Access Control Models and Technologies;2022-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3