QNLP in Practice: Running Compositional Models of Meaning on a Quantum Computer

Author:

Lorenz Robin,Pearson Anna,Meichanetzidis Konstantinos,Kartsaklis Dimitri,Coecke Bob

Abstract

Quantum Natural Language Processing (QNLP) deals with the design and implementation of NLP models intended to be run on quantum hardware. In this paper, we present results on the first NLP experiments conducted on Noisy Intermediate-Scale Quantum (NISQ) computers for datasets of size greater than 100 sentences. Exploiting the formal similarity of the compositional model of meaning by Coecke, Sadrzadeh, and Clark (2010) with quantum theory, we create representations for sentences that have a natural mapping to quantum circuits. We use these representations to implement and successfully train NLP models that solve simple sentence classification tasks on quantum hardware. We conduct quantum simulations that compare the syntax-sensitive model of Coecke et al. with two baselines that use less or no syntax; specifically, we implement the quantum analogues of a “bag-of-words” model, where syntax is not taken into account at all, and of a word-sequence model, where only word order is respected. We demonstrate that all models converge smoothly both in simulations and when run on quantum hardware, and that the results are the expected ones based on the nature of the tasks and the datasets used. Another important goal of this paper is to describe in a way accessible to AI and NLP researchers the main principles, process and challenges of experiments on quantum hardware. Our aim in doing this is to take the first small steps in this unexplored research territory and pave the way for practical Quantum Natural Language Processing.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparing Natural Language Processing and Quantum Natural Processing approaches in text classification tasks;Expert Systems with Applications;2024-11

2. Density Matrices for Metaphor Understanding;Electronic Proceedings in Theoretical Computer Science;2024-08-12

3. Quantum Algorithms for Compositional Text Processing;Electronic Proceedings in Theoretical Computer Science;2024-08-12

4. Quantum word embedding for machine learning;Physica Scripta;2024-07-23

5. Recurrent quantum embedding neural network and its application in vulnerability detection;Scientific Reports;2024-06-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3