Planning for Hybrid Systems via Satisfiability Modulo Theories

Author:

Cashmore MichaelORCID,Magazzeni DanieleORCID,Zehtabi Parisa

Abstract

Planning for hybrid systems is important for dealing with real-world applications, and PDDL+ supports this representation of domains with mixed discrete and continuous dynamics. In this paper we present a new approach for planning for hybrid systems, based on encoding the planning problem as a Satisfiability Modulo Theories (SMT) formula. This is the first SMT encoding that can handle the whole set of PDDL+ features (including processes and events), and is implemented in the planner SMTPlan. SMTPlan not only covers the full semantics of PDDL+, but can also deal with non-linear polynomial continuous change without discretization. This allows it to generate plans with non-linear dynamics that are correct-by-construction. The encoding is based on the notion of happenings, and can be applied on domains with nonlinear continuous change. We describe the encoding in detail and provide in-depth examples. We apply this encoding in an iterative deepening planning algorithm. Experimental results show that the approach dramatically outperforms existing work in finding plans for PDDL+ problems. We also present experiments which explore the performance of the proposed approach on temporal planning problems, showing that the scalability of the approach is limited by the size of the discrete search space. We further extend the encoding to include planning with control parameters. The extended encoding allows the definition of actions to include infinite domain parameters, called control parameters. We present experiments on a set of problems with control parameters to demonstrate the positive effect they provide to the approach of planning via SMT.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3