BDD Ordering Heuristics for Classical Planning

Author:

Kissmann P.,Hoffmann J.

Abstract

Symbolic search using binary decision diagrams (BDDs) can often save large amounts of memory due to its concise representation of state sets. A decisive factor for this method's success is the chosen variable ordering. Generally speaking, it is plausible that dependent variables should be brought close together in order to reduce BDD sizes. In planning, variable dependencies are typically captured by means of causal graphs, and in preceding work these were taken as the basis for finding BDD variable orderings. Starting from the observation that the two concepts of "dependency" are actually quite different, we introduce a framework for assessing the strength of variable ordering heuristics in sub-classes of planning. It turns out that, even for extremely simple planning tasks, causal graph based variable orders may be exponentially worse than optimal. Experimental results on a wide range of variable ordering variants corroborate our theoretical findings. Furthermore, we show that dynamic reordering is much more effective at reducing BDD size, but it is not cost-effective due to a prohibitive runtime overhead. We exhibit the potential of middle-ground techniques, running dynamic reordering until simple stopping criteria hold.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Handling State Space Explosion in Component-Based Software Verification: A Review;IEEE Access;2021

2. References;Supervisory Control and Scheduling of Resource Allocation Systems;2020-06-29

3. Performance heuristics for GR(1) synthesis and related algorithms;Acta Informatica;2019-12-05

4. Characterizing and Computing All Delete-Relaxed Dead-ends;Inteligencia Artificial;2018-09-18

5. Efficient symbolic search for cost-optimal planning;Artificial Intelligence;2017-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3