The IBaCoP Planning System: Instance-Based Configured Portfolios

Author:

Cenamor Isabel,De la Rosa Tomás,Fernández Fernando

Abstract

Sequential planning portfolios are very powerful in exploiting the complementary strength of different automated planners. The main challenge of a portfolio planner is to define which base planners to run, to assign the running time for each planner and to decide in what order they should be carried out to optimize a planning metric. Portfolio configurations are usually derived empirically from training benchmarks and remain fixed for an evaluation phase. In this work, we create a per-instance configurable portfolio, which is able to adapt itself to every planning task. The proposed system pre-selects a group of candidate planners using a Pareto-dominance filtering approach and then it decides which planners to include and the time assigned according to predictive models. These models estimate whether a base planner will be able to solve the given problem and, if so, how long it will take. We define different portfolio strategies to combine the knowledge generated by the models. The experimental evaluation shows that the resulting portfolios provide an improvement when compared with non-informed strategies. One of the proposed portfolios was the winner of the Sequential Satisficing Track of the International Planning Competition held in 2014.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An algorithm selection approach for the flexible job shop scheduling problem: Choosing constraint programming solvers through machine learning;European Journal of Operational Research;2022-11

2. Improving Domain-Independent Heuristic State-Space Planning via plan cost predictions;Journal of Experimental & Theoretical Artificial Intelligence;2021-10-31

3. QROSS: QUBO Relaxation Parameter optimisation via Learning Solver Surrogates;2021 IEEE 41st International Conference on Distributed Computing Systems Workshops (ICDCSW);2021-07

4. On the Importance of Domain Model Configuration for Automated Planning Engines;Journal of Automated Reasoning;2021-06-16

5. Selecting goals in oversubscription planning using relaxed plans;Artificial Intelligence;2021-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3