New Canonical Representations by Augmenting OBDDs with Conjunctive Decomposition

Author:

Lai Yong,Liu Dayou,Yin Minghao

Abstract

We identify two families of canonical knowledge compilation languages. Both families augment ROBDD with conjunctive decomposition bounded by an integer i ranging from 0 to ∞. In the former, the decomposition is finest and the decision respects a chain C of variables, while both the decomposition and decision of the latter respect a tree T of variables. In particular, these two families cover the three existing languages ROBDD, ROBDD with as many implied literals as possible, and AND/OR BDD. We demonstrate that each language in the first family is complete, while each one in the second family is incomplete with expressivity that does not decrease with incremental i. We also demonstrate that the succinctness does not decrease from the i-th language in the second family to the i-th language in the first family, and then to the (i+1)-th language in the first family. For the operating efficiency, on the one hand, we show that the two families of languages support a rich class of tractable logical operations, and particularly the tractability of each language in the second family is not less than that of ROBDD; and on the other hand, we introduce a new time efficiency criterion called rapidity which reflects the idea that exponential operations may be preferable if the language can be exponentially more succinct, and we demonstrate that the rapidity of each operation does not decrease from the i-th language in the second family to the i-th language in the first family, and then to the (i+1)-th language in the first family. Furthermore, we develop a compiler for the last language in the first family (i = ∞). Empirical results show that the compiler significantly advances the compiling efficiency of canonical representations. In fact, its compiling efficiency is comparable with that of the state-of-the-art compilers of non-canonical representations. We also provide a compiler for the i-th language in the first family by translating the last language in the first family into the i-th language (i < ∞). Empirical results show that we can sometimes use the i-th language instead of the last language without any obvious loss of space efficiency.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3