An approximative inference method for solving ∃∀SO satisfiability problems

Author:

Vlaeminck H.,Vennekens J.,Denecker M.,Bruynooghe M.

Abstract

This paper considers the fragment ∃∀SO of second-order logic. Many interesting problems, such as conformant planning, can be naturally expressed as finite domain satisfiability problems of this logic. Such satisfiability problems are computationally hard (ΣP2) and many of these problems are often solved approximately. In this paper, we develop a general approximative method, i.e., a sound but incomplete method, for solving ∃∀SO satisfiability problems. We use a syntactic representation of a constraint propagation method for first-order logic to transform such an ∃∀SO satisfiability problem to an ∃SO(ID) satisfiability problem (second-order logic, extended with inductive definitions). The finite domain satisfiability problem for the latter language is in NP and can be handled by several existing solvers. Inductive definitions are a powerful knowledge representation tool, and this moti- vates us to also approximate ∃∀SO(ID) problems. In order to do this, we first show how to perform propagation on such inductive definitions. Next, we use this to approximate ∃∀SO(ID) satisfiability problems. All this provides a general theoretical framework for a number of approximative methods in the literature. Moreover, we also show how we can use this framework for solving practical useful problems, such as conformant planning, in an effective way.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3