Accelerating Partial-Order Planners: Some Techniques for Effective Search Control and Pruning

Author:

Gerevini A.,Schubert L.

Abstract

We propose some domain-independent techniques for bringing well-founded partial-order planners closer to practicality. The first two techniques are aimed at improving search control while keeping overhead costs low. One is based on a simple adjustment to the default A* heuristic used by UCPOP to select plans for refinement. The other is based on preferring ``zero commitment'' (forced) plan refinements whenever possible, and using LIFO prioritization otherwise. A more radical technique is the use of operator parameter domains to prune search. These domains are initially computed from the definitions of the operators and the initial and goal conditions, using a polynomial-time algorithm that propagates sets of constants through the operator graph, starting in the initial conditions. During planning, parameter domains can be used to prune nonviable operator instances and to remove spurious clobbering threats. In experiments based on modifications of UCPOP, our improved plan and goal selection strategies gave speedups by factors ranging from 5 to more than 1000 for a variety of problems that are nontrivial for the unmodified version. Crucially, the hardest problems gave the greatest improvements. The pruning technique based on parameter domains often gave speedups by an order of magnitude or more for difficult problems, both with the default UCPOP search strategy and with our improved strategy. The Lisp code for our techniques and for the test problems is provided in on-line appendices.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A hybrid approach for expressive numeric and temporal planning with control parameters;Expert Systems with Applications;2024-05

2. Discovering state constraints for planning with conditional effects in Discoplan (part I);Annals of Mathematics and Artificial Intelligence;2019-04-08

3. Planning with Regression Analysis in Transaction Logic;Web Reasoning and Rule Systems;2015

4. Planning as Artificial Intelligence Problem - Short Introduction and Overview;Advanced Technologies for Intelligent Systems of National Border Security;2013

5. Cooperative Dialogues for Defeasible Argumentation-Based Planning;Lecture Notes in Computer Science;2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3