On a Practical, Integer-Linear Programming Model for Delete-Free Tasks and its Use as a Heuristic for Cost-Optimal Planning

Author:

Imai Tatsuya,Fukunaga Alex

Abstract

We propose a new integer-linear programming model for the delete relaxation in cost-optimal planning. While a straightforward IP for the delete relaxation is impractical, our enhanced model incorporates variable reduction techniques based on landmarks, relevance-based constraints, dominated action elimination, immediate action application, and inverse action constraints, resulting in an IP that can be used to directly solve delete-free planning problems. We show that our IP model is competitive with previous state-of-the-art solvers for delete-free problems. The LP-relaxation of the IP model is often a very good approximation to the IP, providing an approach to approximating the optimal value of the delete-free task that is complementary to the well-known LM-cut heuristic. We also show that constraints that partially consider delete effects can be added to our IP/LP models. We embed the new IP/LP models into a forward-search based planner, and show that the performance of the resulting planner on standard IPC benchmarks is comparable with the state-of-the-art for cost-optimal planning.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Capturing (Optimal) Relaxed Plans with Stable and Supported Models of Logic Programs;Theory and Practice of Logic Programming;2023-07

2. Jobs Distribution Task in Computer Networks;2022 IEEE 9th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T);2022-10-10

3. Solving Delete Free Planning with Relaxed Decision Diagram Based Heuristics;Journal of Artificial Intelligence Research;2020-03-19

4. On Hash-Based Work Distribution Methods for Parallel Best-First Search;Journal of Artificial Intelligence Research;2017-10-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3