Approximate Policy Iteration with a Policy Language Bias: Solving Relational Markov Decision Processes

Author:

Fern A.,Yoon S.,Givan R.

Abstract

We study an approach to policy selection for large relational Markov Decision Processes (MDPs). We consider a variant of approximate policy iteration (API) that replaces the usual value-function learning step with a learning step in policy space. This is advantageous in domains where good policies are easier to represent and learn than the corresponding value functions, which is often the case for the relational MDPs we are interested in. In order to apply API to such problems, we introduce a relational policy language and corresponding learner. In addition, we introduce a new bootstrapping routine for goal-based planning domains, based on random walks. Such bootstrapping is necessary for many large relational MDPs, where reward is extremely sparse, as API is ineffective in such domains when initialized with an uninformed policy. Our experiments show that the resulting system is able to find good policies for a number of classical planning domains and their stochastic variants by solving them as extremely large relational MDPs. The experiments also point to some limitations of our approach, suggesting future work.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3