Author:
Kalech Meir,Reches Shulamit
Abstract
When to make a decision is a key question in decision making problems characterized by uncertainty. In this paper we deal with decision making in environments where information arrives dynamically. We address the tradeoff between waiting and stopping strategies. On the one hand, waiting to obtain more information reduces uncertainty, but it comes with a cost. Stopping and making a decision based on an expected utility reduces the cost of waiting, but the decision is based on uncertain information. We propose an optimal algorithm and two approximation algorithms. We prove that one approximation is optimistic - waits at least as long as the optimal algorithm, while the other is pessimistic - stops not later than the optimal algorithm. We evaluate our algorithms theoretically and empirically and show that the quality of the decision in both approximations is near-optimal and much faster than the optimal algorithm. Also, we can conclude from the experiments that the cost function is a key factor to chose the most effective algorithm.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Decision making with dynamic uncertain continuous information;Expert Systems with Applications;2020-11
2. Behavior Trees for Computer Games;International Journal on Artificial Intelligence Tools;2017-04