Comparative Evaluation of Link-Based Approaches for Candidate Ranking in Link-to-Wikipedia Systems

Author:

Fernandez Garcia N.,Arias Fisteus J.,Sanchez Fernandez L.

Abstract

In recent years, the task of automatically linking pieces of text (anchors) mentioned in a document to Wikipedia articles that represent the meaning of these anchors has received extensive research attention. Typically, link-to-Wikipedia systems try to find a set of Wikipedia articles that are candidates to represent the meaning of the anchor and, later, rank these candidates to select the most appropriate one. In this ranking process the systems rely on context information obtained from the document where the anchor is mentioned and/or from Wikipedia. In this paper we center our attention in the use of Wikipedia links as context information. In particular, we offer a review of several candidate ranking approaches in the state-of-the-art that rely on Wikipedia link information. In addition, we provide a comparative empirical evaluation of the different approaches on five different corpora: the TAC 2010 corpus and four corpora built from actual Wikipedia articles and news items.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identifying Salient Entities of News Articles Using Binary Salient Classifier;2021 IEEE International Conference on Big Data (Big Data);2021-12-15

2. English teaching practice based on artificial intelligence technology;Journal of Intelligent & Fuzzy Systems;2019-10-09

3. Exploiting semantic similarity for named entity disambiguation in knowledge graphs;Expert Systems with Applications;2018-07

4. Patterns for Distributed Real-Time Stream Processing;IEEE Transactions on Parallel and Distributed Systems;2017-11-01

5. Lightweight Multilingual Entity Extraction and Linking;Proceedings of the Tenth ACM International Conference on Web Search and Data Mining;2017-02-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3