Quantum Computing and Phase Transitions in Combinatorial Search

Author:

Hogg T.

Abstract

We introduce an algorithm for combinatorial search on quantum computers that is capable of significantly concentrating amplitude into solutions for some NP search problems, on average. This is done by exploiting the same aspects of problem structure as used by classical backtrack methods to avoid unproductive search choices. This quantum algorithm is much more likely to find solutions than the simple direct use of quantum parallelism. Furthermore, empirical evaluation on small problems shows this quantum algorithm displays the same phase transition behavior, and at the same location, as seen in many previously studied classical search methods. Specifically, difficult problem instances are concentrated near the abrupt change from underconstrained to overconstrained problems.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum causal inference in the presence of hidden common causes: An entropic approach;Physical Review A;2022-12-19

2. Lattice structure based metric for feature data fusion;International Journal of Systems Science;2019-06-05

3. Self-control of the time complexity of a constraint satisfaction problem solver program;Journal of Systems and Software;2012-12

4. Problem-solving and Quantum Computation;Cognitive Computation;2011-06-30

5. Comparison of Influence of Two Data-Encoding Methods for Grover Algorithm on Quantum Costs;2011 41st IEEE International Symposium on Multiple-Valued Logic;2011-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3