Technical Paper Recommendation: A Study in Combining Multiple Information Sources

Author:

Basu C.,Hirsh H.,Cohen W. W.,Nevill-Manning C.

Abstract

The growing need to manage and exploit the proliferation of online data sources is opening up new opportunities for bringing people closer to the resources they need. For instance, consider a recommendation service through which researchers can receive daily pointers to journal papers in their fields of interest. We survey some of the known approaches to the problem of technical paper recommendation and ask how they can be extended to deal with multiple information sources. More specifically, we focus on a variant of this problem -- recommending conference paper submissions to reviewing committee members -- which offers us a testbed to try different approaches. Using WHIRL -- an information integration system -- we are able to implement different recommendation algorithms derived from information retrieval principles. We also use a novel autonomous procedure for gathering reviewer interest information from the Web. We evaluate our approach and compare it to other methods using preference data provided by members of the AAAI-98 conference reviewing committee along with data about the actual submissions.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-objective optimization for assigning reviewers to proposals based on social networks;Journal of Management Science and Engineering;2024-09

2. CRM-SBKG: Effective Citation Recommendation by Siamese BERT and Knowledge Graph;2023 IEEE 2nd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA);2023-02-24

3. Recommending Reviewers and Experts;Knowledge Recommendation Systems with Machine Intelligence Algorithms;2023

4. Literature Review;Knowledge Recommendation Systems with Machine Intelligence Algorithms;2023

5. A Hybrid Model Based on Pre-trained Language Model and Graph Neural Networks for Scientific Paper Recommendation;2022 4th International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI);2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3