Prime Implicates and Prime Implicants: From Propositional to Modal Logic

Author:

Bienvenu M.

Abstract

Prime implicates and prime implicants have proven relevant to a number of areas of artificial intelligence, most notably abductive reasoning and knowledge compilation. The purpose of this paper is to examine how these notions might be appropriately extended from propositional logic to the modal logic K. We begin the paper by considering a number of potential definitions of clauses and terms for K. The different definitions are evaluated with respect to a set of syntactic, semantic, and complexity-theoretic properties characteristic of the propositional definition. We then compare the definitions with respect to the properties of the notions of prime implicates and prime implicants that they induce. While there is no definition that perfectly generalizes the propositional notions, we show that there does exist one definition which satisfies many of the desirable properties of the propositional case. In the second half of the paper, we consider the computational properties of the selected definition. To this end, we provide sound and complete algorithms for generating and recognizing prime implicates, and we show the prime implicate recognition task to be PSPACE-complete. We also prove upper and lower bounds on the size and number of prime implicates. While the paper focuses on the logic K, all of our results hold equally well for multi-modal K and for concept expressions in the description logic ALC.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Logic-Based Explainability in Machine Learning;Reasoning Web. Causality, Explanations and Declarative Knowledge;2023

2. Efficient Modal Decision Trees;AIxIA 2023 – Advances in Artificial Intelligence;2023

3. Efficient multi-agent epistemic planning: Teaching planners about nested belief;Artificial Intelligence;2022-01

4. Probabilistic truthlikeness, content elements, and meta-inductive probability optimization;Synthese;2021-03-30

5. Consolidating Modal Knowledge Bases;FRONT ARTIF INTEL AP;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3