Algorithms and Applications for the Same-Decision Probability

Author:

Chen S. J.,Choi A.,Darwiche A.

Abstract

When making decisions under uncertainty, the optimal choices are often difficult to discern, especially if not enough information has been gathered. Two key questions in this regard relate to whether one should stop the information gathering process and commit to a decision (stopping criterion), and if not, what information to gather next (selection criterion). In this paper, we show that the recently introduced notion, Same-Decision Probability (SDP), can be useful as both a stopping and a selection criterion, as it can provide additional insight and allow for robust decision making in a variety of scenarios. This query has been shown to be highly intractable, being PP^PP-complete, and is exemplary of a class of queries which correspond to the computation of certain expectations. We propose the first exact algorithm for computing the SDP, and demonstrate its effectiveness on several real and synthetic networks. Finally, we present new complexity results, such as the complexity of computing the SDP on models with a Naive Bayes structure. Additionally, we prove that computing the non-myopic value of information is complete for the same complexity class as computing the SDP.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Disease Diagnosis with Cost-Sensitive Grouped Features Based on Deep Reinforcement Learning;2023 International Joint Conference on Neural Networks (IJCNN);2023-06-18

2. Costly Features Classification using Monte Carlo Tree Search;2021 International Joint Conference on Neural Networks (IJCNN);2021-07-18

3. Robustness of AI-based prognostic and systems health management;Annual Reviews in Control;2021

4. Decision making with dynamic uncertain continuous information;Expert Systems with Applications;2020-11

5. Value of Information in Probabilistic Logic Programs;Electronic Proceedings in Theoretical Computer Science;2019-09-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3