Approximate Strong Equilibrium in Job Scheduling Games

Author:

Feldman M.,Tamir T.

Abstract

A Nash Equilibrium (NE) is a strategy profile resilient to unilateral deviations, and is predominantly used in the analysis of multiagent systems. A downside of NE is that it is not necessarily stable against deviations by coalitions. Yet, as we show in this paper, in some cases, NE does exhibit stability against coalitional deviations, in that the benefits from a joint deviation are bounded. In this sense, NE approximates strong equilibrium. Coalition formation is a key issue in multiagent systems. We provide a framework for quantifying the stability and the performance of various assignment policies and solution concepts in the face of coalitional deviations. Within this framework we evaluate a given configuration according to three measures: (i) IR_min: the maximal number alpha, such that there exists a coalition in which the minimal improvement ratio among the coalition members is alpha, (ii) IR_max: the maximal number alpha, such that there exists a coalition in which the maximal improvement ratio among the coalition members is alpha, and (iii) DR_max: the maximal possible damage ratio of an agent outside the coalition. We analyze these measures in job scheduling games on identical machines. In particular, we provide upper and lower bounds for the above three measures for both NE and the well-known assignment rule Longest Processing Time (LPT). Our results indicate that LPT performs better than a general NE. However, LPT is not the best possible approximation. In particular, we present a polynomial time approximation scheme (PTAS) for the makespan minimization problem which provides a schedule with IR_min of 1+epsilon for any given epsilon. With respect to computational complexity, we show that given an NE on m >= 3 identical machines or m >= 2 unrelated machines, it is NP-hard to determine whether a given coalition can deviate such that every member decreases its cost.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3