Semi-supervised Learning with Induced Word Senses for State of the Art Word Sense Disambiguation

Author:

Başkaya Osman,Jurgens David

Abstract

Word Sense Disambiguation (WSD) aims to determine the meaning of a word in context, and successful approaches are known to benefit many applications in Natural Language Processing. Although supervised learning has been shown to provide superior WSD performance, current sense-annotated corpora do not contain a sufficient number of instances per word type to train supervised systems for all words. While unsupervised techniques have been proposed to overcome this data sparsity problem, such techniques have not outperformed supervised methods. In this paper, we propose a new approach to building semi-supervised WSD systems that combines a small amount of sense-annotated data with information from Word Sense Induction, a fully-unsupervised technique that automatically learns the different senses of a word based on how it is used. In three experiments, we show how sense induction models may be effectively combined to ultimately produce high-performance semi-supervised WSD systems that exceed the performance of state-of-the-art supervised WSD techniques trained on the same sense-annotated data. We anticipate that our results and released software will also benefit evaluation practices for sense induction systems and those working in low-resource languages by demonstrating how to quickly produce accurate WSD systems with minimal annotation effort.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. State of the Art Analysis of Word Sense Disambiguation;Communications in Computer and Information Science;2024

2. Word sense disambiguation for low resource languages: setswana collocations;International Workshop on Signal Processing and Machine Learning (WSPML 2023);2023-12-08

3. Past, present and future of the applications of machine learning in soil science and hydrology;Soil and Water Research;2023-05-22

4. Semi-supervised classifier guided by discriminator;Scientific Reports;2022-08-29

5. Word sense induction using leader-follower clustering of automatically generated lexical substitutes;Expert Systems with Applications;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3