Module Extraction in Expressive Ontology Languages via Datalog Reasoning

Author:

Armas Romero Ana,Kaminski Mark,Cuenca Grau Bernardo,Horrocks Ian

Abstract

Module extraction is the task of computing a (preferably small) fragment M of an ontology T that preserves a class of entailments over a signature of interest S. Extracting modules of minimal size is well-known to be computationally hard, and often algorithmically infeasible, especially for highly expressive ontology languages. Thus, practical techniques typically rely on approximations, where M provably captures the relevant entailments, but is not guaranteed to be minimal. Existing approximations ensure that M preserves all second-order entailments of T w.r.t. S, which is a stronger condition than is required in many applications, and may lead to unnecessarily large modules in practice. In this paper we propose a novel approach in which module extraction is reduced to a reasoning problem in datalog. Our approach generalises existing approximations in an elegant way. More importantly, it allows extraction of modules that are tailored to preserve only specific kinds of entailments, and thus are often significantly smaller. Our evaluation on a wide range of ontologies confirms the feasibility and benefits of our approach in practice.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Praedixi, Redegi, Cogitavi: Adaptive knowledge for resource-aware semantic reasoning;Expert Systems with Applications;2024-09

2. Efficient Computation of Signature-Restricted Views for Semantic Web Ontologies;Proceedings of the ACM Web Conference 2024;2024-05-13

3. A Review on Ontology Modularization Techniques - A Multi-Dimensional Perspective;IEEE Transactions on Knowledge and Data Engineering;2022

4. Enhancing Probabilistic Model Checking with Ontologies;Formal Aspects of Computing;2021-05-26

5. ReAD: AD-Based Modular Ontology Classification;Logics in Artificial Intelligence;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3