Mixed Strategies in Combinatorial Agency

Author:

Babaioff M.,Feldman M.,Nisan N.

Abstract

In many multiagent domains a set of agents exert effort towards a joint outcome, yet the individual effort levels cannot be easily observed. A typical example for such a scenario is routing in communication networks, where the sender can only observe whether the packet reached its destination, but often has no information about the actions of the intermediate routers, which influences the final outcome. We study a setting where a principal needs to motivate a team of agents whose combination of hidden efforts stochastically determines an outcome. In a companion paper we devise and study a basic ''combinatorial agency'' model for this setting, where the principal is restricted to inducing a pure Nash equilibrium. Here we study various implications of this restriction. First, we show that, in contrast to the case of observable efforts, inducing a mixed-strategies equilibrium may be beneficial for the principal. Second, we present a sufficient condition for technologies for which no gain can be generated. Third, we bound the principal's gain for various families of technologies. Finally, we study the robustness of mixed equilibria to coalitional deviations and the computational hardness of the optimal mixed equilibria.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning approximately optimal contracts;Theoretical Computer Science;2023-11

2. Multi-agent Contracts;Proceedings of the 55th Annual ACM Symposium on Theory of Computing;2023-06-02

3. Designing menus of contracts efficiently: The power of randomization;Artificial Intelligence;2023-05

4. Principal-Agent Contracts Meet a Cardinality;2023

5. Bayesian agency: Linear versus tractable contracts;Artificial Intelligence;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3