Solving Transition Independent Decentralized Markov Decision Processes

Author:

Becker R.,Zilberstein S.,Lesser V.,Goldman C. V.

Abstract

Formal treatment of collaborative multi-agent systems has been lagging behind the rapid progress in sequential decision making by individual agents. Recent work in the area of decentralized Markov Decision Processes (MDPs) has contributed to closing this gap, but the computational complexity of these models remains a serious obstacle. To overcome this complexity barrier, we identify a specific class of decentralized MDPs in which the agents' transitions are independent. The class consists of independent collaborating agents that are tied together through a structured global reward function that depends on all of their histories of states and actions. We present a novel algorithm for solving this class of problems and examine its properties, both as an optimal algorithm and as an anytime algorithm. To our best knowledge, this is the first algorithm to optimally solve a non-trivial subclass of decentralized MDPs. It lays the foundation for further work in this area on both exact and approximate algorithms.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3