Analysis of Watson's Strategies for Playing Jeopardy!

Author:

Tesauro G.,Gondek D. C.,Lenchner J.,Fan J.,Prager J. M.

Abstract

Major advances in Question Answering technology were needed for IBM Watson to play Jeopardy! at championship level -- the show requires rapid-fire answers to challenging natural language questions, broad general knowledge, high precision, and accurate confidence estimates. In addition, Jeopardy! features four types of decision making carrying great strategic importance: (1) Daily Double wagering; (2) Final Jeopardy wagering; (3) selecting the next square when in control of the board; (4) deciding whether to attempt to answer, i.e., "buzz in." Using sophisticated strategies for these decisions, that properly account for the game state and future event probabilities, can significantly boost a player's overall chances to win, when compared with simple "rule of thumb" strategies. This article presents our approach to developing Watson's game-playing strategies, comprising development of a faithful simulation model, and then using learning and Monte-Carlo methods within the simulator to optimize Watson's strategic decision-making. After giving a detailed description of each of our game-strategy algorithms, we then focus in particular on validating the accuracy of the simulator's predictions, and documenting performance improvements using our methods. Quantitative performance benefits are shown with respect to both simple heuristic strategies, and actual human contestant performance in historical episodes. We further extend our analysis of human play to derive a number of valuable and counterintuitive examples illustrating how human contestants may improve their performance on the show.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey on legal question–answering systems;Computer Science Review;2023-05

2. Insights from General Complexity Evolution for Our Current Situation;Journal of World-Systems Research;2023-03-21

3. Overprecision is a property of thinking systems.;Psychological Review;2022-05-05

4. The Internet of Everything: Smart things and their impact on business models;Journal of Business Research;2021-01

5. Recognising the Types of Software Assets and Its Impact on Asset Reuse;Communications in Computer and Information Science;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3