A Case of Pathology in Multiobjective Heuristic Search

Author:

Pérez de la Cruz J.L.,Mandow L.,Machuca E.

Abstract

This article considers the performance of the MOA* multiobjective search algorithm with heuristic information. It is shown that in certain cases blind search can be more efficient than perfectly informed search, in terms of both node and label expansions. A class of simple graph search problems is defined for which the number of nodes grows linearly with problem size and the number of nondominated labels grows quadratically. It is proved that for these problems the number of node expansions performed by blind MOA* grows linearly with problem size, while the number of such expansions performed with a perfectly informed heuristic grows quadratically. It is also proved that the number of label expansions grows quadratically in the blind case and cubically in the informed case.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dimensionality reduction in multiobjective shortest path search;Computers & Operations Research;2015-12

2. Lower bound sets for biobjective shortest path problems;Journal of Global Optimization;2015-06-24

3. Multiobjective shortest path problems with lexicographic goal-based preferences;European Journal of Operational Research;2014-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3