Finding Optimal Solutions for Voting Game Design Problems

Author:

De Keijzer B.,Klos T. B.,Zhang Y.

Abstract

In many circumstances where multiple agents need to make a joint decision, voting is used to aggregate the agents' preferences. Each agent's vote carries a weight, and if the sum of the weights of the agents in favor of some outcome is larger than or equal to a given quota, then this outcome is decided upon. The distribution of weights leads to a certain distribution of power. Several `power indices' have been proposed to measure such power. In the so-called inverse problem, we are given a target distribution of power, and are asked to come up with a game in the form of a quota, plus an assignment of weights to the players whose power distribution is as close as possible to the target distribution (according to some specied distance measure). Here we study solution approaches for the larger class of voting game design (VGD) problems, one of which is the inverse problem. In the general VGD problem, the goal is to find a voting game (with a given number of players) that optimizes some function over these games. In the inverse problem, for example, we look for a weighted voting game that minimizes the distance between the distribution of power among the players and a given target distribution of power (according to a given distance measure). Our goal is to find algorithms that solve voting game design problems exactly, and we approach this goal by enumerating all games in the class of games of interest. We first present a doubly exponential algorithm for enumerating the set of simple games. We then improve on this algorithm for the class of weighted voting games and obtain a quadratic exponential (i.e., 2^O(n^2)) algorithm for enumerating them. We show that this improved algorithm runs in output-polynomial time, making it the fastest possible enumeration algorithm up to a polynomial factor. Finally, we propose an exact anytime-algorithm that runs in exponential time for the power index weighted voting game design problem (the `inverse problem'). We implement this algorithm to find a weighted voting game with a normalized Banzhaf power distribution closest to a target power index, and perform experiments to obtain some insights about the set of weighted voting games. We remark that our algorithm is applicable to optimizing any exponential-time computable function, the distance of the normalized Banzhaf index to a target power index is merely taken as an example.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3