An Exact Algorithm Based on MaxSAT Reasoning for the Maximum Weight Clique Problem

Author:

Fang Zhiwen,Li Chu-Min,Xu Ke

Abstract

Recently, MaxSAT reasoning is shown very effective in computing a tight upper bound for a Maximum Clique (MC) of a (unweighted) graph. In this paper, we apply MaxSAT reasoning to compute a tight upper bound for a Maximum Weight Clique (MWC) of a wighted graph. We first study three usual encodings of MWC into weighted partial MaxSAT dealing with hard clauses, which must be satisfied in all solutions, and soft clauses, which are weighted and can be falsified. The drawbacks of these encodings motivate us to propose an encoding of MWC into a special weighted partial MaxSAT formalism, called LW (Literal-Weighted) encoding and dedicated for upper bounding an MWC, in which both soft clauses and literals in soft clauses are weighted. An optimal solution of the LW MaxSAT instance gives an upper bound for an MWC, instead of an optimal solution for MWC. We then introduce two notions called the Top-k literal failed clause and the Top-k empty clause to extend classical MaxSAT reasoning techniques, as well as two sound transformation rules to transform an LW MaxSAT instance. Successive transformations of an LW MaxSAT instance driven by MaxSAT reasoning give a tight upper bound for the encoded MWC. The approach is implemented in a branch-and-bound algorithm called MWCLQ. Experimental evaluations on the broadly used DIMACS benchmark, BHOSLIB benchmark, random graphs and the benchmark from the winner determination problem show that our approach allows MWCLQ to reduce the search space significantly and to solve MWC instances effectively. Consequently, MWCLQ outperforms state-of-the-art exact algorithms on the vast majority of instances. Moreover, it is surprisingly effective in solving hard and dense instances.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3