Robust Agent Teams via Socially-Attentive Monitoring

Author:

Kaminka G. A.,Tambe M.

Abstract

Agents in dynamic multi-agent environments must monitor their peers to execute individual and group plans. A key open question is how much monitoring of other agents' states is required to be effective: The Monitoring Selectivity Problem. We investigate this question in the context of detecting failures in teams of cooperating agents, via Socially-Attentive Monitoring, which focuses on monitoring for failures in the social relationships between the agents. We empirically and analytically explore a family of socially-attentive teamwork monitoring algorithms in two dynamic, complex, multi-agent domains, under varying conditions of task distribution and uncertainty. We show that a centralized scheme using a complex algorithm trades correctness for completeness and requires monitoring all teammates. In contrast, a simple distributed teamwork monitoring algorithm results in correct and complete detection of teamwork failures, despite relying on limited, uncertain knowledge, and monitoring only key agents in a team. In addition, we report on the design of a socially-attentive monitoring system and demonstrate its generality in monitoring several coordination relationships, diagnosing detected failures, and both on-line and off-line applications.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Algorithms for partially robust team formation;Autonomous Agents and Multi-Agent Systems;2023-04-25

2. Enabling BDI group plans with coordination middleware: semantics and implementation;Autonomous Agents and Multi-Agent Systems;2021-08-19

3. Diagnosing resource usage failures in multi-agent systems;Expert Systems with Applications;2017-07

4. Predicting Plan Failure by Monitoring Action Sequences and Duration;ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal;2017-06-30

5. Evaluating the SBR Algorithm using Automatically Generated Plan Libraries;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3