Probabilistic Inference Techniques for Scalable Multiagent Decision Making

Author:

Kumar Akshat,Zilberstein Shlomo,Toussaint Marc

Abstract

Decentralized POMDPs provide an expressive framework for multiagent sequential decision making. However, the complexity of these models---NEXP-Complete even for two agents---has limited their scalability. We present a promising new class of approximation algorithms by developing novel connections between multiagent planning and machine learning. We show how the multiagent planning problem can be reformulated as inference in a mixture of dynamic Bayesian networks (DBNs). This planning-as-inference approach paves the way for the application of efficient inference techniques in DBNs to multiagent decision making. To further improve scalability, we identify certain conditions that are sufficient to extend the approach to multiagent systems with dozens of agents. Specifically, we show that the necessary inference within the expectation-maximization framework can be decomposed into processes that often involve a small subset of agents, thereby facilitating scalability. We further show that a number of existing multiagent planning models satisfy these conditions. Experiments on large planning benchmarks confirm the benefits of our approach in terms of runtime and scalability with respect to existing techniques.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Situation-based genetic network programming to solve agent control problems;Advances in Computers;2024

2. Optimal Symmetric Strategies in Multi-Agent Systems with Decentralized Information;2023 62nd IEEE Conference on Decision and Control (CDC);2023-12-13

3. Optimal Communication and Control Strategies for a Multi-Agent System in the Presence of an Adversary;2022 IEEE 61st Conference on Decision and Control (CDC);2022-12-06

4. Solving infinite-horizon Dec-POMDPs using Finite State Controllers within JESP;2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI);2021-11

5. User-Friendly Smartphone Interface to Share Knowledge in Human-Robot Collaborative Search Tasks;2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN);2021-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3