A Disaster Response System based on Human-Agent Collectives

Author:

Ramchurn Sarvapali D.,Huynh Trung Dong,Wu Feng,Ikuno Yukki,Flann Jack,Moreau Luc,Fischer Joel E.,Jiang Wenchao,Rodden Tom,Simpson Edwin,Reece Steven,Roberts Stephen,Jennings Nicholas R.

Abstract

Major natural or man-made disasters such as Hurricane Katrina or the 9/11 terror attacks pose significant challenges for emergency responders. First, they have to develop an understanding of the unfolding event either using their own resources or through third-parties such as the local population and agencies. Second, based on the information gathered, they need to deploy their teams in a flexible manner, ensuring that each team performs tasks in The most effective way. Third, given the dynamic nature of a disaster space, and the uncertainties involved in performing rescue missions, information about the disaster space and the actors within it needs to be managed to ensure that responders are always acting on up-to-date and trusted information. Against this background, this paper proposes a novel disaster response system called HAC-ER. Thus HAC-ER interweaves humans and agents, both robotic and software, in social relationships that augment their individual and collective capabilities. To design HAC-ER, we involved end-users including both experts and volunteers in a several participatory design workshops, lab studies, and field trials of increasingly advanced prototypes of individual components of HAC-ER as well as the overall system. This process generated a number of new quantitative and qualitative results but also raised a number of new research questions. HAC-ER thus demonstrates how such Human-Agent Collectives (HACs) can address key challenges in disaster response. Specifically, we show how HAC-ER utilises crowdsourcing combined with machine learning to obtain most important situational awareness from large streams of reports posted by members of the public and trusted organisations. We then show how this information can inform human-agent teams in coordinating multi-UAV deployments, as well as task planning for responders on the ground. Finally, HAC-ER incorporates an infrastructure and the associated intelligence for tracking and utilising the provenance of information shared across the entire system to ensure its accountability. We individually validate each of these elements of HAC-ER and show how they perform against standard (non-HAC) baselines and also elaborate on the evaluation of the overall system.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Natural disasters detection using explainable deep learning;Intelligent Systems with Applications;2024-09

2. Assessing the Impact of Alerts on the Human Supervisor’s Decision-Making Performance in Multi-Robot Missions;ACM Transactions on Human-Robot Interaction;2024-08-31

3. Artificial Intelligence for Real-Time Disaster Management: A New Platform for Efficient Recovery and Volunteer Training;2024 International Conference on Computer, Information and Telecommunication Systems (CITS);2024-07-17

4. Future Trends and Innovations in Natural Disaster Detection Using AI and ML;Advances in Computational Intelligence and Robotics;2024-05-31

5. Scalable Interactive Machine Learning for Future Command and Control;2024 International Conference on Military Communication and Information Systems (ICMCIS);2024-04-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3