Bisimulations on Data Graphs

Author:

Abriola Sergio,Barceló Pablo,Figueira Diego,Figueira Santiago

Abstract

Bisimulation provides structural conditions to characterize indistinguishability from an external observer between nodes on labeled graphs. It is a fundamental notion used in many areas, such as verification, graph-structured databases, and constraint satisfaction. However, several current applications use graphs where nodes also contain data (the so called "data graphs"), and where observers can test for equality or inequality of data values (e.g., asking the attribute 'name' of a node to be different from that of all its neighbors). The present work constitutes a first investigation of "data aware" bisimulations on data graphs. We study the problem of computing such bisimulations, based on the observational indistinguishability for XPath ---a language that extends modal logics like PDL with tests for data equality--- with and without transitive closure operators. We show that in general the problem is PSpace-complete, but identify several restrictions that yield better complexity bounds (coNP, PTime) by controlling suitable parameters of the problem, namely the amount of non-locality allowed, and the class of models considered (graphs, DAGs, trees). In particular, this analysis yields a hierarchy of tractable fragments.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mobility-aware Latency-constrained Data Placement in SDN-enabled Edge Networks;NOMS 2023-2023 IEEE/IFIP Network Operations and Management Symposium;2023-05-08

2. Compositional equivalences based on open pNets;Journal of Logical and Algebraic Methods in Programming;2023-02

3. Data Graphs with Incomplete Information (and a Way to Complete Them);Logics in Artificial Intelligence;2023

4. Compositional Equivalences Based on Open Pnets;SSRN Electronic Journal;2022

5. Knowledge Dynamics and Behavioural Equivalences in Multi-Agent Systems;Mathematics;2021-11-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3