Improving End-Point Position Control in Hydraulic Testing Machines with a Fuzzy Logic Based Approach

Author:

ANLAK SerkanORCID,DÜVEN Ekrem1ORCID

Affiliation:

1. BURSA TEKNİK ÜNİVERSİTESİ

Abstract

During the repetitive operation of hydraulic testing machines, some undesirable vibration movements and non-compliance with the set value may occur at the piston end-point, which is the output of the system. PID (Proportional-Integral-Derivative) control is widely used in such systems in practical applications. However, the use of a standard (fixed coefficient) PID control alone cannot completely eliminate problems such as endpoint vibration and/or non-compliance of the endpoint position with the set value, caused by dynamic parameter changes in the hydraulic system. In the current state of the applications, when such a situation is encountered, the controller coefficients need to be readjusted by a human operator. In this study, to avoid this need and automatically adjust PID controller coefficients, a fuzzy logic-based computation approach has been developed and applied to the existing control system. A hydraulic system was designed and realized to test the developed method. The end-point position control of the system was established and improved utilizing the developed approach. With this development, an improvement of more than 10% was achieved in the adjustment of the hydraulic testing machine end-point oscillation amplitude to the set value. The use of this method also eliminates the need for human operators to readjust the controller parameters in case of long-term operation of hydraulic test systems.

Publisher

Canakkale Onsekiz Mart University

Subject

Polymers and Plastics,General Environmental Science

Reference14 articles.

1. Ak, A., Yılmaz, E. & Katrancıoglu, S. (2023). Integral Fuzzy Sliding Mode Controller for Hydraulic System Using Neural Network Modelling. Gazi University Journal of Science, 36(3). DOI: https://doi.org/10.35378/gujs.979370

2. Aydoğdu, Ö. & Çatkafa, A. (2019). Bir hidrolik derin çekme pres makinesinin PLC tabanlı bulanık mantık kontrolü ve endüstri 4.0 uygulaması. Konya Journal of Engineering Sciences, 7(3), 573-584. DOI: https://doi.org/10.36306/konjes.613867

3. Çınar, E. (2013). Position control of hydraulic cylinder with fuzzy logic method (In Turkish), (Master’s thesis), Graduate School of Natural and Appl. Sciences, Gazi University, Ankara, Turkey.

4. Çınar, E., Ulaş, H. B. & Bilgin, M. (2014). Hidrolik silindirin bulanık mantık yöntemi ile konum kontrolü. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 30(3), 214-229. Retrieved from: https://dergipark.org.tr/en/pub/erciyesfen/issue/25557/269587

5. Demirel, K. (2016). Hydraulic and pneumatic (In Turkish), Birsen Yayınevi, İstanbul, Turkey.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3