Early-Stage Modelling and Forecast of COVID-19 Outbreak in Burkina Faso using a Bayesian SIR Approach

Author:

S.M.A. Somda,E.B.A. Dabone,M. Doulougou,C.S. Bationo,K.T.M. Galboni

Abstract

In this article, we propose a Bayesian approach for estimating and predicting the magnitude of the coronavirus epidemic in Burkina Faso in its early stage. Our approach is inspired by the work of Wang et al. but adapted to the Burkinabe context. Two models are presented: a simple Bayesian SIR approach and another Bayesian SIR which takes into account the public health measures undertaken by the government of Burkina Faso. The approach was implemented at the early stage of the COVID-19 pandemic in Burkina Faso, covering the period from March 9 to April 30, 2020. The results of the analyses will allow a good prediction of COVID-19 infections and deaths in the early days of the epidemic, considering government policies.

Publisher

African - British Journals

Reference25 articles.

1. Erik, Volz, Marc, Baguelin, Sangeeta, Bhatia, Adhiratha, Booyasiri, Anne, Cori, Zulma, Cucunuba, Gina, Cuomo-Dannenburg, Christl A., Donnelly, Alaria, Dorigatti, Rich, FitzJohn, Han, Fu, Katy, Gaythorpe, Azra, Ghani, Arran, Hamlet, Wes, Hinsley, Natsuko, Imai, Daniel, Laydon, Gemma, Nedjati-Gilani, Lucy, Okell, … Neil M., Fergusson. (2020). Report 5: Phylogenetic analysis of SARS-CoV-2 (No. 5; Imperial College London COVID-19 Response Team). Imperial College. https://doi.org/10.25561/77169

2. Eriksson, H., Morin, M., Ekberg, J., Jenvald, J., & Timpka, T. (2009). Assumptions management in simulation of infectious disease outbreaks. AMIA ... Annual Symposium Proceedings / AMIA Symposium. AMIA Symposium, 2009, 173–177.

3. Ferguson, N., Laydon, D., Nedjati Gilani, G., Imai, N., Ainslie, K., Baguelin, M., Bhatia, S., Boonyasiri, A., Cucunuba Perez, Z., Cuomo-Dannenburg, G., Dighe, A., Dorigatti, I., Fu, H., Gaythorpe, K., Green, W., Hamlet, A., Hinsley, W., Okell, L., Van Elsland, S., … Ghani, A. (2020). Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand [Report]. https://doi.org/10.25561/77482

4. GU, C., Jiang, W., Zhao, T., & Zheng, B. (2020). Mathematical Recommendations to Fight Against COVID-19. SSRN Electronic Journal, 1–13. https://doi.org/10.2139/ssrn.3551006

5. Guiro, A., Koné, B., & Ouaro, S. (2020). Mathematical Model of the Spread of the Coronavirus Disease 2019 (COVID-19) in Burkina Faso. Applied Mathematics, 11(11), 1204–1218. https://doi.org/10.4236/am.2020.1111082

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3