Theory and Application of Two (2) Iterative Imputation Approaches to Nigeria Annual Rainfall Data Reported

Author:

E.M. Ogbeide,M. Shuaibu,U.I. Siloko

Abstract

This research work is based on missing data statistics. Missing data occur where one or more of the observations in a dataset are completely not available. This work focuses on two (2) iterative imputation approaches. These are the Regression approach and the Expectation Maximization iterative imputation. These approaches were used to analyze the secondary data of the thirty-six (36) states in Nigeria on the rainfall data collected from the Annual Abstract of Statistics 2016. The evaluation criteria and comparison of these two approaches were done based on the error efficiency using the Raw Bias (RB), Mean Squared Error (MSE), Root Mean Squared Error (RMSE) and variance. The analysis of the result showed that the Expectation Maximization (EM) method was better for this specific data as reported in the Annual Abstract of Statistics 2016, compared to the other approaches. This was seen in the smaller errors values from the computed cases. It is therefore recommended that this approach should be used for obtaining missing data like other rainfall data in Nigeria. These two imputation approaches are good for making available missing data in observations.

Publisher

African - British Journals

Subject

General Medicine,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3