Modeling and Forecasting Nigerian Naira/US Dollar and The Gambian Dalasi/US Dollar Exchange Rates: A Comparative Study

Author:

I.U. Christogonus,B.J. Lamin,N.U. Mark,K.G. Emwinloghosa,S.N. Chimezie

Abstract

This paper compares the predictive performance of time series forecast methods on the Nigerian Naira/US Dollar (NGN/USD) and The Gambian Dalasi/US Dollar (GMD/USD) exchange rates. The forecast methods—Autoregressive Integrated Moving Average (ARIMA), Simple Exponential Smoothing (SES), Holt’s Linear Trend, and Damped Holt—were applied to the annual Nigerian Naira and Gambian Dalasi against the US Dollar for the period 1960–2020. The best model for forecasting exchange rates in both countries was selected based on Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Mean Absolute Scaled Error (MASE). The findings in this study revealed that both Naira/US Dollar and Gambian Dalasi/US Dollar exchange rate distributions are positively skewed and ARIMA (0,2,2) model was selected as the most appropriate model for forecasting both exchange rates. The results also showed that by 2030, the Nigerian Naira/US Dollar exchange rate will rise by 37.06 percent while the Gambian Dalasi/US Dollar will rise by 23.18 percent. This study suggests that both countries should adopt tighter fiscal, monetary, and supply-side policies.

Publisher

African - British Journals

Subject

General Medicine,General Chemistry

Reference27 articles.

1. [1] Hina, H. & Qayyum, A. (2015). Exchange rate determination and out of sample forecasting: cointegration analysis, Munich Personal RePEc Archive (MPRA), paper No. 61997. https://mpra.ub.uni-muenchen.de/61997

2. [2] Hong, Y., Li, F. and Zhao. Can the random walk model be beaten in out-of-sample density? Evidence from intraday foreign exchange rates, Journal of Econometrics, 2007, 141: 736-776.

3. [3] Khashei, M. and Bijari, M. Exchange rate forecasting better with hybrid artificial neural networks models, Journal of Mathematics and Computer Science, 2011, 1(1): 103-125.

4. [4] Ramzan, S., Ramzan, S. and Zahid, F.M. Modeling and forecasting exchange rate dynamics in Pakistan using ARCH family models, Electronic Journal of Applied Statistical Analysis, 2012, 5(1): 15-19.

5. [5] Jhingan, M.L. (2005). International Economics, 5th edition, Vrinda Publication (P) Limited Delhi.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3