Forecasting Meningitis Outbreak with a Climate-Inspired Model

Author:

T. F. Aminu,O. M. Bamigbola

Abstract

Recently, meningitis outbreaks have posed substantial public health issues across the world, prompting effective preventative and control measures. Therefore, this work proposes a unique method for estimating meningitis incidence by incorporating atmospheric data into a predictive model, christened as climate-based predictive meningitis model (CBPMM). The CBPMM is created using machine learning formalities, with meteorological data serving as a key component of the predictor. The model incorporates powerful prediction techniques that analyze historical data and environmental patterns comprehensively and thus, provide useful insights for early identification and proactive intervention strategies. With infection transmission rate at 0.88, carrier natural recovery rate 0.06, and the efficacy of treatment is 0.001, ; it implies that the infectious disease persists in the community. However, when ; that is, the disease is controllable. The CBPMM marks a huge step forward in meningitis surveillance, providing healthcare authorities with information to promptly limit the effect of outbreaks.

Publisher

African - British Journals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3