A Method for Designing Multi-Layer Sheet-Based Lightweight Funicular Structures

Author:

Lu Yao1,Alsalem Thamer2,Akbarzadeh Masoud3

Affiliation:

1. Ph.D. Student, Polyhedral Structures Laboratory, School of Design, University of Pennsylvania, USA

2. Master???s Student, School of Design, University of Pennsylvania, USA

3. Assistant Professor, Polyhedral Structures Laboratory, School of Design, University of Pennsylvania, USA

Abstract

Multi-layer spatial structures usually take considerable external loads with a small material usage at all scales. Polyhedral graphic statics (PGS) provides a method to design multi-layer funicular polyhedral structures, and the structural forms are usually materialized as space frames. Our previous research shows that the intrinsic planarity of the polyhedral geometries can be harnessed for efficient fabrication and construction processes using flat-sheet materials. Sheet-based structures are advantageous over conventional space frame systems because sheets can provide more load paths and constrain the kinematic degrees of freedom of the nodes. Therefore, they are more capable of taking a wider variety of load cases compared to space frames. Moreover, sheet materials can be fabricated into complex shapes using CNC milling, laser cutting, water jet cutting, and CNC bending techniques. However, not all sheets are necessary as long as the load paths are preserved and the system does not have kinematic degrees of freedom. To find an efficient set of faces that satisfies the requirements, this paper first incorporates and adapts the matrix analysis method to calculate the kinematic degrees of freedom for sheet-based structures. Then, an iterative algorithm is devised to help find a reduced set of faces with zero kinematic degrees of freedom. To attest to the advantages of this method over bar-node construction, a comparative study is carried out using finite element analysis. The results show that, with the same material usage, the sheet-based system has improved performance than the framework system under a range of loading scenarios.

Publisher

International Association for Shell and Spatial Structures

Subject

Mechanical Engineering,Arts and Humanities (miscellaneous),Building and Construction,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3