From Ruled Surfaces to Elastica-ruled Surfaces: New Possibilities for Creating Architectural Forms

Author:

Lee Ting-Uei1,Xie Yi Min1

Affiliation:

1. Centre for Innovative Structures and Materials, School of Engineering, RMIT University, Melbourne, 3001, Australia

Abstract

Ruled surfaces are widely used for architectural forms, as diverse 3D shapes can be conveniently generated by the movement of a straight ruling. There is vast potential to create a rich variety of new architectural forms by introducing curved rulings into ruled surfaces. This paper presents a new method to generate ruled surface variants by making a fundamental change to existing ruled surfaces through parametric reformulation and the use of curved rulings. A new type of ruled surface composed of curved rulings, the elastica-ruled surface, is proposed. An analytical geometric modelling method is developed based on the transformation of line-ruled surfaces, enabling convenient generation of elegant shapes and forms for architectural applications. In this paper, curved rulings are represented by elastica curves—large, elastic, bending deformations of a straight slender beam. We demonstrate that elastica curve design parameters can completely control the shape of an elastica-ruled surface and define a large set of transformation results. This study classifies elastica-ruled surfaces into five categories based on their shape characteristics. Potential applications of elastica-ruled surfaces that consider elastic bending behaviour are presented, including bending-active structures, robot-assisted manufacturing and kinetic architectural designs. By extension, this study shows that adopting higher-order elastica curves can further enhance the design diversity of novel architectural forms.

Publisher

International Association for Shell and Spatial Structures

Subject

Mechanical Engineering,Arts and Humanities (miscellaneous),Building and Construction,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3