A Comprehensive Study on Different Machine Learning Techniques to Predict Heart Disease

Author:

Sharma Pooja, ,Site Sarwesh,

Abstract

The heart is considered to be one of the most vital organs in the body. It contributes to the purification and circulation of blood throughout the body. Heart Diseases are responsible for the vast majority of fatalities around the world. Some symptoms, such as chest pain, a faster heartbeat, and difficulty breathing, have been documented. This data is reviewed regularly. In this review, a basic introduction related to the topic is first introduced. Furthermore, provide an overview of the healthcare industry. Then, an in-depth discussion of heart disease and the types of heart disease. After that, a summary of heart disease prediction, and different methods of heart disease prediction are also provided. Then, a short description of machine learning, also its different types, and how to use machine learning in the healthcare sector is discussed. And the most relevant classification techniques such as K-nearest neighbor, decision tree, support vector machine, neural network, Bayesian methods, regression, clustering, naïve Bayes classifier, artificial neural network, as well as random forest for heart disease is described in this paper. Then, a related work available on heart disease prediction is briefly elaborated. At last, concluded this paper with future research.

Publisher

Lattice Science Publication (LSP)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Attitude Towards Artificial Intelligence and Tech Anxiety Among Working Professionals in Metropolitan Cities;Indian Journal of Artificial Intelligence and Neural Networking;2024-06-30

2. A Framework to Optimize Student Performance using Machine Learning;International Journal of Recent Technology and Engineering (IJRTE);2024-05-30

3. Attitude Towards Artificial Intelligence and Tech Anxiety Among Working Professionals in Metropolitan Cities;2024

4. Is the Ecosystem of Kolkata Sustainable?: Machine Learning Based Study on Air Quality Index;Indian Journal of Artificial Intelligence and Neural Networking;2023-12-30

5. Ensemble Learning for Heart Disease Diagnosis: AVoting Classifier Approach;International Journal of Emerging Science and Engineering;2023-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3