Effective Text Processing utilizing NLP

Author:

Devrapalli Dr. DharmaiahORCID, ,Guduri Srija PadminiORCID,Madhuri Pericharla JayaORCID,Reddy Sathi Navya VahiniORCID,Pasupuleti PavaniORCID, , , ,

Abstract

Summarizing is the practice of condensing a body of material into a more manageable size while retaining all of the key data elements and the intended meaning. Automatic text summarizing systems can now quickly retrieve summary phrases from input documents. However, it has a number of shortcomings, such as duplication, insufficient coverage, incorrect extraction of key lines, and poor sentence coherence. In this study, a new concept of summarizer technique is proposed using the Python spacy package. It extracts the most significant information from the text. The scoring system is also used to compute the score for the words in order to determine the word frequency. The findings show that the proposed method completes the summary process faster than the current algorithm. An online tool called the text to summary converter aids in material summarizing. This programmer will give us a summary of the data that we upload. The primary goal is to accurately summaries the data entered. The most crucial sentences will be removed before the unnecessary ones.

Publisher

Lattice Science Publication (LSP)

Reference20 articles.

1. Deepa, R., Konshi, J., Haritha, A. and Shobini, K. (n.d.). Automatic Text Summarization System. [online] Available at: https://www.ripublication.com/ijaerspl2019/ijaerv14n5spl_04.pdf [Accessed 19 Jun. 2022].

2. Johnson, M.E. (2018). Automatic Summarization of Natural Language. arXiv:1812.10549 [cs, stat]. [online] Available at: https://arxiv.org/abs/1812.10549 [Accessed 30 Jun. 2022].

3. .Maybury, M. (1999). Advances in Automatic Text Summarization. [online] Google Books. MIT Press. Available at: https://books.google.co.in/books?hl=en&lr=&id=YtUZQaKDmzEC&oi=fnd&pg=PA81&dq=EduardHovyand Chin Yew Lin.Automated+text+summarization in SUMMARIST. MIT Press [Accessed 30 Jun. 2022].

4. .Mahdipour, E. (2014). Automatic Persian Text Summarizer Using Simulated Annealing and Genetic Algorithm. International Journal of Intelligent Information Systems, 3(6), p.84. doi:10.11648/j.ijiis.s.2014030601.26. [CrossRef]

5. Srikanth, P. and Deverapalli, D. (2017). CFTDISM:Clustering Financial Text Documents Using Improved Similarity Measure. [online] IEEE Xplore. doi:10.1109/ICCIC.2017.8524466. [CrossRef]

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data Summerization and Voice Assistant;Indian Journal of Image Processing and Recognition;2024-03-30

2. An Extensive Survey on Investigation Methodologies for Text Summarization;Indian Journal of Signal Processing;2023-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3