Stock Market Prediction

Author:

,Josey AaronORCID,Amrutha N ,

Abstract

The prediction of stock market trends is a challenging yet critical task in the financial sector, given its significant implications for investors, traders, and financial institutions. This research leverages the Long Short-Term Memory (LSTM) algorithm, a type of recurrent neural network (RNN), to develop a robust model for forecasting stock prices. The study utilizes historical stock market data sourced from Yahoo Finance, accessed via the yfinance package in Python. The primary objectives are to preprocess the data, implement the LSTM model, and evaluate its performance against traditional models such as Random Forest and Linear Regression. Data preprocessing involved handling missing values, normalizing the dataset, and transforming it into sequences suitable for LSTM training. The model's architecture includes multiple LSTM layers designed to capture temporal dependencies in the data. The study evaluates the model's performance using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and prediction accuracy. Comparative analysis shows that the LSTM model outperforms both Random Forest and Linear Regression models, with lower MSE and RMSE values and higher accuracy in predicting stock prices. This research discovered that LSTM's ability to retain long-term dependencies makes it particularly effective for stock market prediction, where historical trends and patterns significantly influence future prices. The results indicate that the LSTM model provides more reliable and precise predictions, which can enhance decision-making in trading and investment. This research highlights the potential of advanced neural network architectures in financial forecasting, offering a valuable tool for investors aiming to optimize their strategies and mitigate risks. The significance of this study lies in its practical application in the financial industry, demonstrating that machine learning models, particularly LSTM, can substantially improve the accuracy of stock market predictions. Future research could explore the integration of additional features, such as macroeconomic indicators and sentiment analysis, to further enhance model performance. This study underscores the importance of continuous innovation and the adoption of sophisticated algorithms to navigate the complexities of financial markets.

Publisher

Lattice Science Publication (LSP)

Reference12 articles.

1. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735

2. Brownlee, J. (2018). Deep Learning for Time Series Forecasting. Machine Learning Mastery.

3. Moody, J. (1992). The predictive value of the CRSP stock market total return index. Journal of Financial Economics, 31(1), 43-75.

4. Yahoo Finance API Documentation. (n.d.). Retrieved from https://pypi.org/project/yfinance/ .

5. Zhang, Y., & Jansen, B. J. (2009). Predicting the Stock Market. IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology, 343-346.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3