Molecular Docking, Simulation Against SARS-COV-2, Theoretical Study (DFT) and Superoxide Anion Scavenging by Cyclic Voltammetry of 2-Hydroxyphenyl Imino Naphthalen-2-ol

Author:

HOUAS NoudjoudORCID, ,KITOUNI Siham,TOUNSI Assia, ,

Abstract

The simulation in terms of enzymatic activity and the estimation of the process transfer of electronic active sites of the synthesized compound: 2-hydroxyphenyl imino naphthalen-2-ol (Schiff basis) required the use of valuable calculation programs such as the docking, for which we used the Arguslab program and the Gaussian endowed to the calculation of the functional density theory of the molecule studied. And as the experimental study designed under difficult, costly or sometimes impossible conditions, the docking program simulates the molecular binding of the protein target with the ligand, which can reveal the arrangement of the hydrogen and hydrophobic bonds that link the active sites and the ligand; it is an economical step in terms of time and money that can lead to the selectivity of the product of interest in drug manufacturing. In this context, we are currently focused on the study of the inhibitory effect of this molecule with the enzyme (6lu7) fighting against covid-19, and have compared it to the drug chloroquine. The obtained results show that the calculated Gibbs free energy with protease is -9.215 Kcal/mol, which is almost more inhibiting than chloroquine (-7.2652 Kcal/mol). The DFT method allowed us to estimate that the potentially positive sites easily cede an electron when they are brought into contact with oxidizing species during the reduction reaction. The study of the superoxide anion scavenging activity via this product is performed practically by electrochemical way, the Gibbs standard energy (-16.9022 KJ/mol) explains that the reaction can spontaneously form very stable inactive species with the oxidizing ion.

Publisher

Lattice Science Publication (LSP)

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3