Spectral Variability in Fixed Windows using Fractional Fourier Transform: Application in Power Spectral Density Estimation

Author:

Pachauri Dr. RahulORCID,

Abstract

In statistical signal processing, power spectral density estimation is a frequency domain analysis in which power contents of a signal are measured with respect to frequency components of that signal. The power estimation of a signal can be carried out more precisely by using a window with a narrower 3-dB bandwidth and higher side-lobe attenuation. Theoretically, these two spectral parameters show trade-off in variable windows and remain constant in fixed windows. In this work, spectral behavior of fixed windows has been elaborated using Fractional Fourier Transform (FRFT) keeping their inherent time domain behavior intact. The FRFT is an extension of conventional Fourier transform with an additional variable parameter, known as rotation angle, which makes it more flexible and useful in various signal processing applications viz. power estimation and designing of tunable transition band FIR filters. In this article, variability in 3-dB bandwidth and sidelobe attenuation of fixed windows has been achieved by exploiting the available flexibility in FRFT and obtained variability has been applied in the estimation of signal power. Simulation results demonstrate that both of these two spectral parameters are improved and hence, trade-off problem between resolution and spectral leakage in the power spectral density estimation is overcome upto an extent.

Publisher

Lattice Science Publication (LSP)

Reference27 articles.

1. B.P. Lathi, Modern Digital and Analog Communication Systems, 3rd ed., Oxford University Press, New York (1998)

2. F.J. Harris, On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform. Proc. IEEE, 66(1), 51-83 (1978) [CrossRef]

3. A Modern Perspective. Proc;Kay and S.L. Marple;IEEE,1981

4. M.H. Hayes, Statistical Signal Processing and Modeling, John Wiley & Sons, New York (1996)

5. N. Geckinli and D. Yavuz, Some Novel Windows and a Concise Tutorial Comparison of Window Families. IEEE Trans. Acous. Speech Signal Processing. 26(6), 501-507 (1978) [CrossRef]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3