Image Segmentation and Classification Fields Are Generated Using Binary Random Fields Based on Planar Graph and Neighborhood Spanning Tree

Author:

,Dr. G. Thippanna ORCID

Abstract

Image analysis plays a pivotal role in computer vision, with image segmentation and classification being fundamental tasks in this domain. This abstract presents a novel approach to image processing that leverages Binary Random Fields (BRF) with a foundation in planar graphs and neighborhood spanning trees. This innovative methodology seeks to enhance the accuracy and efficiency of image segmentation and classification, addressing key challenges in computer vision applications. Binary Random Fields (BRF) is probabilistic graphical models that have proven effective in capturing spatial dependencies and contextual information within images. Our proposed method extends the utility of BRF by incorporating planar graph theory and neighborhood spanning trees to refine the segmentation and classification processes. Planar graphs offer a structured representation of image data, preserving topological relationships among pixels, while neighborhood spanning trees provide a hierarchical framework for modeling image regions

Publisher

Lattice Science Publication (LSP)

Reference17 articles.

1. G.Matheron, Elements pour UneTheorie des MilieuxPoreux, Paris, 1967

2. L. Vincent. AlgorithmesMorphologiques _a Base de Files d'Attenteet de Lacets: Extension aux Graphes. PhD thesis, Ecole des Mines, Paris, May 1990.

3. F.Meyer, "Contrast Feature Extraction ", in special issue of Practical Metallographic, J.L Chermant, Ed (Rfederer-Verlag, Stuttgart, 1978) Pp.374-380.

4. Dubes .R And Jain A. K Validity studies in clustering methodologies, Pattern Recognition 11, 235-254, 1979. https://doi.org/10.1016/0031-3203(79)90034-7

5. An Efficient Algorithm for Helly Property Recognition in a Linear Hypergraph, H. Cherifi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3